植物

ウィキペディアから、無料の百科事典
ナビゲーションにジャンプ 検索にジャンプ

植物
時間範囲: 中原生代–現在
Diversity of plants image version 5.png
科学的分類 e
ドメイン: 真核生物
(ランクなし): ディアフォレティケス
(ランクなし): アーケプラスチダ
王国: Plantae
sensu Copeland、1956
監督
同義語
  • 緑色植物亜界 キャバリエ-スミス1981 [1]
  • Chlorobionta Jeffrey 1982、emend。Bremer 1985、修正。ルイスとマコート2004 [2]
  • Chlorobiota Kenrick and Crane 1997 [3]
  • Chloroplastida Adl et al。、2005 [4]
  • Phytaバークレイ1939エメンド。Holt&Uidica 2007
  • Cormophyta Endlicher、1836年
  • Cormobionta Rothmaler、1948年
  • Euplanta Barkley、1949年
  • テロモビオンタタハタジャン、1964年
  • Embryobionta Cronquist et al。、1966
  • 陸上植物ウィッタカー、1969年

植物は主に多細胞生物であり、主にPlantae王国の光合成 真核生物です。歴史的に、植物は動物はないすべての生物を含む2つの王国のいずれかとして扱われ、すべての藻類菌類は植物として扱われていました。ただし、Plantaeの現在の定義はすべて、菌類と一部の藻類、および原核生物古細菌細菌)を除外しています。ある定義によれば、植物はクレードViridiplantae(「緑の植物」のラテン語名)を形成します。 植物開花針葉樹や他の裸子植物シダその同盟国マツモ苔類コケ、および緑藻類が、除外茶色の藻を

緑の植物シアノバクテリアとの内部共生に由来する一次葉緑体による光合成介して太陽光からエネルギーの大部分を取得します。それらの葉緑体は葉緑素aとbを含み、それはそれらに緑色を与えます。いくつかの植物は寄生性または腐生性であり通常の量のクロロフィルを生成する能力または光合成する能力を失っていますが、それでも花、果実、および種子を持っています。無性生殖も一般的ですが植物は有性生殖世代交代を特徴としています。

約32万の植物があり、その大部分、約26万〜29万種が種子を生産します。[5]緑の植物は、世界の分子状酸素のかなりの部分を提供し[6]、地球のほとんどの生態系の基礎となっています。穀物果物野菜を生産する植物も基本的な人間の食物を形成し、何千年もの間家畜化さてきました。植物には、装飾品、建築材料筆記材料など、多くの文化的およびその他の用途があり、多種多様に、それらは医薬品供給源であり、向精神薬植物の科学的研究は生物学の一分野である植物学として知られています。

意味

すべての生物は伝統的に、植物と動物の2つのグループのいずれかに分類されていました。この分類は、一般的に動かない植物と、食物を捕まえるために移動することが多い動物を区別したアリストテレス(紀元前384年〜紀元前322年)に由来する可能性があります。ずっと後に、リンネ(1707–1778)が科学的分類の現代システムの基礎を作成したとき、これらの2つのグループは、Vegetabilia(後のMetaphytaまたはPlantae)とAnimalia(Metazoaとも呼ばれる)の王国になりました。それ以来、最初に定義された植物界には、いくつかの無関係なグループ、および真菌藻類のいくつかのグループが含まれていることが明らかになりました新しい王国に移されました。ただし、これらの生物は、特に一般的な状況では、依然として植物と見なされることがよくあります。[要出典]

「植物」という用語は、一般に、多細胞性、セルロースを含む細胞壁の所有、および一次葉緑体との光合成を実行する能力の所有を意味します。[7] [8]

植物の現在の定義

Plantaeまたは植物という名前が特定の生物または分類群のグループに適用される場合、通常は4つの概念のいずれかを指します。最も包括的なものから最も包括的なものまで、これらの4つのグループは次のとおりです。

名前 範囲 説明
知られている陸上植物、陸上植物 Plantae sensu strictissimo 厳密な意味での植物が含まれる苔類マツモ類コケ類、及び維管束植物、ならびにこれらの生存基(例えば、Metaphytaと同様化石植物ウィッタカー1969[9]植物界Margulis、1971 [10] )。
緑色植物としても知られ、緑色植物亜界ViridiphytaChlorobiontaまたはChloroplastida Plantae sensu stricto 厳密な意味での植物には含ま緑藻を含む、それらの中に登場し、陸上植物stonewortsを。植物群間の関係はまだ解明されておらず、それらに付けられた名前はかなり異なります。クレード緑色植物亜界を有する生物の群を包含するセルロースをその中に細胞壁を有する、クロロフィル 及びBと有しプラスチド光合成及び澱粉を記憶することができる2つだけの膜によって結合します。このクレードはこの記事の主要な主題です(例えば、Plantae Copeland、1956 [11])。
アーケプラスチダもPlastidaまたはPrimoplantaeとしても知られ、 Plantae sensulato 広義の植物は、上記の緑の植物に加えて、色素体の外側の細胞質にフロリデアンデンプンを貯蔵する紅藻(Rhodophyta)と灰色藻(Glaucophytaで構成されます。このクレードにはシアノバクテリアを飲み込むことによって一次葉緑体を直接獲得したすべての生物が含まれます(例、Plantae Cavalier-Smith、1981 [12])。
植物の古い定義(廃止) Plantae sensu amplo 最も広い意味での植物とは、Plantaeに多様な藻類、菌類、または細菌を配置した、古くて時代遅れの分類を指します(たとえば、PlantaeまたはVegetabilia Linnaeus[13] Plantae Haeckel 1866[14] Metaphyta Haeckel、1894[15] Plantae Whittaker、 1969 [9])。

「植物」と呼ばれているさまざまなグループ間の関係を調べる別の方法は、それらの進化的関係を示すクラドグラムを使用することです。これらはまだ完全には解決されていませんが、上記の3つのグループ間で受け入れられている1つの関係を以下に示します[説明が必要][16] [17] [18] [19] [20] [21] [22]「植物」と呼ばれるものは太字で示されています(一部のマイナーグループは省略されています)。

アーケプラスチダ+クリプチスタ 

Rhodophyta(紅藻)

ロデルフィス(略奪)

ピコゾア

灰色藻(灰色藻)

緑の植物

メソスティグマ藻

クロロキブス藻

スピロテニア

緑藻植物門

ストレプト植物

シャジクモ目(ストーンワート)

陸上植物陸上植物

クリプチスタ

伝統的に緑藻
と呼ばれるグループ

緑藻のグループを組み合わせて名前を付ける方法は、著者によってかなり異なります。

藻類

藻類は、光合成によって食物を生産するいくつかの異なるグループの生物で構成されているため、伝統的に植物界に含まれています。海藻は、大きな多藻類から単細胞生物の範囲であり、3つのグループに分類される緑藻類紅藻類および褐藻。褐藻は、シアノバクテリアではなく紅藻と内部共生関係を形成した非光合成の祖先から、他の藻とは独立して進化したという十分な証拠があり、ここで定義されているように植物として分類されなくなりました。[23] [24]

緑色植物亜界、緑の植物–緑藻と陸上植物–は、共通の祖先のすべての子孫で構成されるグループであるクレードを形成します。いくつかの例外を除いて、緑の植物には次の共通の特徴があります。クロロフィルaおよびbを含むシアノバクテリアに由来する一次葉緑体セルロースを含む細胞壁、および色素体内に含まれるデンプンの形の食料品店。それらは中心小体なしで閉じた有糸分裂起こし、典型的には平らなクリステを伴うミトコンドリア持っています。葉緑体 緑の植物の多くは2つの膜に囲まれており、それらが内共生シアノバクテリアに直接由来していることを示唆しています。

Rhodophyta(紅藻)とGlaucophyta灰色藻)の2つの追加グループに、光合成に使用される色素が緑色植物亜界とは異なるため、色が異なるものの、内部共生シアノバクテリア直接由来するように見える一次葉緑体があります。これらのグループはまた、貯蔵多糖類がフロリディアンデンプンであり、色素体ではなく細胞質に貯蔵されるという点で緑の植物とは異なりますそれらは緑色植物亜界と共通の起源を持っていたようであり、3つのグループはクレードアーケプラスチダを形成します、その名前は、それらの葉緑体が単一の古代の内部共生イベントに由来することを意味します。これは、「植物」という用語の最も広い現代的な定義です。

これとは対照的に、他のほとんどの藻類(例えば褐藻類/珪藻ハプト藻渦鞭毛藻類、およびeuglenidsは)異なる顔料を持っているだけでなく、3つのまたは4つの周囲の膜と葉緑体を持っていないだけ。彼らはアーケプラスチダの近親者ではなく、おそらく摂取された、または共生した緑と赤の藻とは別に葉緑体を獲得したのでしょう。したがって、それらは過去にあったとしても、植物界の最も広い現代の定義にさえ含まれていません。

緑の植物または緑色植物亜界は、伝統的に緑藻(ストーンワートを含む)と陸上植物に分けられていました。ただし、現在、陸上植物は緑藻のグループ内から進化したことが知られているため、緑藻自体は側系統群、つまり共通の祖先の子孫の一部を除外したグループです。 Paraphyletic基は、一般的に、最近の治療に緑色植物亜界は2つのクレードに分割されているように、現代の分類では回避されている緑藻植物門ストレプト植物(陸上植物と車軸藻植物門を含みます)。[25] [26]

緑藻植物門(すべての緑藻にも使用されている名前)は、陸上植物が進化した車軸藻植物門の姉妹グループです。約4,300種があり[27]、主にアオサウルバなどの単細胞または多細胞の海洋生物です。

緑色植物亜界の他のグループは、主に淡水または陸生のストレプト植物であり、これは陸生植物と車軸藻植物で構成され、それ自体がチリモ目ストーンワートなどの緑藻のいくつかのグループで構成されています。ストレプト植物藻類は、単細胞または多細胞フィラメントを形成し、分岐または非分岐のいずれかです。[26]アオミドロは、教育でよく使用され、池の藻類の「スカム」の原因となる生物の1つであるため、多くの人によく知られている糸状のストレプト植物藻類です。淡水シャジクモは陸上植物に非常に似ており、最も近い親戚であると考えられています。[要出典] 淡水に浸されて成長し、それらは小枝の渦巻きを持つ中央の茎で構成されています。

菌類

リンネの最初の分類では、菌類は間違いなく動物でも鉱物でもないため、植物内に配置されました。これらは他の唯一の選択肢でした。微生物学の19世紀の発展に伴いエルンストヘッケルは、PlantaeとAnimaliaに加えて、新しい王国Protistaを導入しましたが、真菌がPlantaeに最適に配置されたのか、原生生物として再分類されるべきかについては、依然として議論の余地があります。 1969年、ロバート・ホイタッカーは菌類王国の創設を提案しました。それ以来、分子的証拠は、菌類の最新の共通祖先(先祖)が、おそらく植物や他の王国よりも動物界のものに類似していることを示しています。[28]

Whittakerの最初の再分類は、菌類と植物の間の栄養の根本的な違いに基づいていました。一般に光合成によって炭素を獲得する、いわゆる独立栄養生物とは異なり、真菌は葉緑体を持たず、一般に周囲の物質を分解して吸収することによって炭素を獲得するため、従属栄養 性腐生生物と呼ばれます。さらに、多細胞真菌の下部構造は植物のそれとは異なり、菌糸と呼ばれる多くのキチン質の微細なストランドの形をとり、さらに細胞に細分化されたり、多くの生物のを含むシンシチウム形成したりする可能性があります。きのこを含む子実体 最もよく知られている例は、真菌の生殖構造であり、植物によって生成される他の構造とは異なります。[要出典]

多様性

以下の表は、さまざまな緑色植物(緑色植物亜界)の区分のいくつかの種数の推定値を示しています。全植物の約85〜90%が顕花植物です。現在、いくつかのプロジェクトがオンラインデータベースですべての植物種を収集しようとしています。たとえば、World FloraOnlineWorldPlantsはどちらも約35万種をリストしています。[29] [30]

生きている緑色植物(緑色植物亜界)の分裂の多様性
非公式グループ 部門名
[要出典]
一般名 生きている種の数 おおよその数 非公式グループで
緑藻 緑藻植物門 緑藻緑藻 3,800–4,300 [31] [32] 8,500

(6,600–10,300)

車軸藻植物 緑藻(例えばdesmidsstoneworts 2,800〜6,000 [33] [34]
コケ植物 苔類 苔類 6,000〜8,000 [35] 19,000

(18,100–20,200)

ツノゴケ類 ツノゴケ類 100〜200 [36]
コケ植物 コケ 12,000 [37]
シダ植物 小葉植物 Clubmosses 1,200 [24] 12,000

(12,200)

シダ類 シダ、ウィスクシダ、トクサ 11,000 [24]
種子植物 ソテツ ソテツ 160 [38] 260,000

(259,511)

イチョウ 銀杏 1 [39]
針葉樹 針葉樹 630 [24]
グネツム綱 グネツム綱 70 [24]
被子植物 顕花植物 258,650 [40]

植物の命名は、によって支配されている国際藻類・菌類・植物命名規約栽培植物のための命名の国際コード(参照栽培植物分類学を)。

進化

植物の進化は増加をもたらした複雑さのレベルが早いから、藻類マットを通じて、コケ植物lycopodsシダ複雑に裸子植物被子植物今日の。これらすべてのグループの植物は、特にそれらが進化した環境で繁栄し続けています。

12 億年前にこの土地に藻類のスカムが形成されました、陸上植物が出現したのは約4 億5000万年前のオルドビス紀になってからでした[41]しかし、プレカンブリアの岩石の炭素同位体比の研究からの新しい証拠は、複雑な光合成植物が1000myaを超えて地球上で発達したことを示唆している[42] 1世紀以上の間、陸上植物の祖先は水生環境とその後の陸上での生活に適応したアイデアは、通常、植物学者のフレデリックオーペンバウアーが1908年の著書「TheOrigin of aLandFlora」でクレジットしたものです。。遺伝的証拠に裏付けられた最近の別の見解は、それらが陸生の単細胞藻類から進化したことであり[43]、赤と緑の藻類の共通の祖先、および単細胞の淡水藻類の灰色藻でさえ、淡水中の陸生環境で発生したというものです。バイオフィルムまたは微生物マット。[44]原始的な陸上植物は、約4 億2000万年前のシルル紀後期に多様化し始め、その多様化の結果はRhyniechertからの初期のデボン紀の化石群集に非常に詳細に表示されます。。このチャートは、初期の植物を細胞の詳細で保存し、火山の泉で石化した。デボン紀の半ばまでに、根、葉、二次木材など、今日の植物で認識されている特徴のほとんどが存在し、デボン紀後期までに種子が進化しました。[45]それにより、デボン紀後期の植物は、それらが背の高い木の森を形成することを可能にする高度に達した。進化の革新は石炭紀以降の地質学的時代に続き、今日も続いています。コミュニティの構造は変化しましたが、ほとんどの植物グループはペルム紀-三畳紀の絶滅イベントによって比較的無傷でした。これは〜(三畳紀の開花植物の進化のための場面を設定している可能性があり200 万年前)、白亜紀と第三紀で爆発した。進化する植物の最新の主要なグループは、約4000 万年前から第三紀中期に重要になった草でした草、および他の多くのグループは、低COを生き残るために代謝の新しいメカニズムを進化させました
2
過去1000万年にわたる熱帯の暖かく乾燥した状態

Kenrick and Craneの後の1997年に提案されたPlantaeの系統樹[46]は、Smith etal。のシダ植物に変更を加えたものです。[47]プラシノ藻があるparaphyletic初期緑色藻類系統発散の集合が、緑藻植物門外部グループとして扱われる:[48]以降の著者らは、この提案に従っていません。

プラシノ藻(マイクロモナド)

ストレプトビオンタ
陸上植物
口内炎
ポリスポランギエート
維管束植物
ユートラケオファイト
大葉植物
リグノフィタ

精子植物(種子植物)

原裸子植物 †

シダ植物

Pteridopsida(真シダ)

マラッティオプシダ

Equisetopsida(トクサ)

Psilotopsida(泡立て器シダ&adders'-舌)

クラドキシロン綱 †

小葉植物

小葉植物

ゾステロフィロフィタ †

リニア綱 †

アグラオフィトン †

Horneophytopsida  †

コケ植物(コケ)

ツノゴケ類ツノゴケ類

マルカンティオフィタ(苔類)

車軸藻植物

緑藻植物門

トレボウクシア綱(Pleurastrophyceae)

緑藻綱

アオサ藻綱

新しく提案された分類は、Leliaert etal。2011 [49]で緑藻の分岐群についてはSilar 2016 [20] [21] [50] [51 ]で、陸上植物の分岐群についてはNovíkov&Barabaš-Krasni2015 [52]で変更されました。プラシノ藻がここで緑藻植物の中に配置されていることに注意してください。

緑色植物亜界

メソスティグマ藻

クロロキブス藻

スピロテニア

緑藻植物門株式会社 プラシノ藻科

ストレプトビオンタ

Streptofilum

クレブソルミディオフィタ

フラグモプラスト植物

Charophyta Rabenhorst1863が修正します。Lewis&McCourt 2004(Stoneworts)

コレオケーテ藻綱

接合藻

胚性生物

苔類(苔類)

Stomatophyta

コケ植物(真のコケ)

ツノゴケ類(非開花ツノゴケ類

多胞子嚢胞

Horneophyta

Aglaophyta

気管束植物(維管束植物)

その後、1,153の植物種からのゲノムとトランスクリプトームに基づく系統発生が提案されました。[53]藻類グループの配置は、その後配列決定されたメソスティグマ藻類およびクロロキブス藻類のゲノムに基づく系統発生によってサポートされています。[54] [55]コケ植物の分類は、Puttick etal。の両方によってサポートされています。2018、[56]、そしてツノゴケ類のゲノムが関与する系統発生によって、それ以降も配列決定されています。[57] [58]

紅藻

灰色藻

緑色植物亜界

緑藻植物門

プラシノコッカレス

 

メソスティグマ藻

クロロキブス藻

スピロテニア

Klebsormidiales

キャラ

Coleochaetales

接合藻類

コケ植物

ツノゴケ類

苔類

コケ

小葉植物

シダ

種子植物

裸子植物

被子植物

緑藻植物門グレード
ストレプト植物藻類グレード

陸上植物

そう、私たちに最も精通している植物である多細胞と呼ばれる陸上植物、陸上植物。陸上植物には、シダ、針葉樹、顕花植物など維管束植物が含まれます。彼らはまた、含まコケ植物そのうち、コケ苔類が最も一般的ですが。

これらの植物はすべて、セルロース構成された細胞壁を持つ真核細胞を持っており、ほとんどの植物は、水、二酸化炭素を使用して食物を合成する光合成によってエネルギーを獲得します。約300種の植物は光合成をしませんが、他の種の光合成植物の寄生虫です。陸上植物は、非生殖組織によって保護された特殊な生殖器官を持つことにより、現代の植物が進化したと考えられている種類と同様の光合成生活のモードを表す緑藻は区別されます。

コケ植物は古生代初期に最初に出現しましたタルギオニアなどの一部の種は乾燥耐性がありますが、それらは主に水分がかなりの期間利用できる生息地に住んでいます。コケ植物のほとんどの種は、そのライフサイクルを通して小さいままです。 :これは、二つの世代間交代含ま半数体段階、と呼ばれる配偶体、および二倍体と呼ばれる段階、胞子体を。コケ植物では、胞子体は常に枝分かれしておらず、親の配偶体に栄養的に依存したままです。陸上植物は、その外面にキューティクルを分泌する能力を持っています。これは、乾燥に対する抵抗力を与えるワックス状の層です。の中にコケマツモキューティクルは、通常は胞子体上に生成されます。気孔は苔類には存在しませんが、コケやツノゴケ類の胞子嚢に発生し、ガス交換を可能にします。

維管束植物はシルル紀に最初に出現し、デボン紀によって多様化し、多くの異なる陸生環境に広がりました。彼らは、特に維管束組織の木部師部など、ますます乾燥した場所に広がることを可能にする多くの適応を開発しました、生物全体に水と食物を輸送します。土壌水分と養分を得ることができる根系もデボン紀の間に進化しました。現代の維管束植物では、胞子体は通常大きく、分岐し、栄養的に独立しており、長寿命ですが、古生代の配偶体が胞子体と同じくらい複雑であったという証拠が増えています。すべての維管束植物グループの配偶体は、ライフサイクルの中でサイズが小さくなり、目立つように進化しました。

種子植物では、マイクロガメトファイト多細胞の自由生活生物から花粉粒のいくつかの細胞に還元され、小型化されたメガガメトファイトメガスポランギウム内に残り、親植物に付着して依存します。外皮と呼ばれる保護層で囲まれた大胞子嚢は、胚珠として知られています。花粉によって生成された精子による受精後、胚珠の内部に胚胞子体が発生します。外皮は種皮になり、胚珠は種に成長します。種子植物は、精子の移動や自由生活配偶体の発達を自由水に依存しないため、非常に乾燥した条件で生き残り、繁殖することができます。

最初の種子植物、pteridosperms今絶滅(シードシダ)、デボン紀に登場し、石炭を通じて多様化。それらは現代の裸子植物の祖先であり、そのうちの4つの生き残ったグループ、特にいくつかのバイオームで優勢な樹木ある針葉樹が今日広まっています名前の裸子植物から来るギリシャγυμνόσπερμοςの複合、γυμνόςgymnos点灯して「裸」)とσπέρμαスペルマ点灯 「種子」)、胚珠とそれに続く種子は保護構造(心皮または果実)に囲まれていませんが、通常は円錐形の鱗で裸で運ばれます。

Fossils

A petrified log in Petrified Forest National Park, Arizona

Plant fossils include roots, wood, leaves, seeds, fruit, pollen, spores, phytoliths, and amber (the fossilized resin produced by some plants). Fossil land plants are recorded in terrestrial, lacustrine, fluvial and nearshore marine sediments. Pollen, spores and algae (dinoflagellates and acritarchs) are used for dating sedimentary rock sequences. The remains of fossil plants are not as common as fossil animals, although plant fossils are locally abundant in many regions worldwide.

The earliest fossils clearly assignable to Kingdom Plantae are fossil green algae from the Cambrian. These fossils resemble calcified multicellular members of the Dasycladales. Earlier Precambrian fossils are known that resemble single-cell green algae, but definitive identity with that group of algae is uncertain.

The earliest fossils attributed to green algae date from the Precambrian (ca. 1200 mya).[59][60] The resistant outer walls of prasinophyte cysts (known as phycomata) are well preserved in fossil deposits of the Paleozoic (ca. 250–540 mya). A filamentous fossil (Proterocladus) from middle Neoproterozoic deposits (ca. 750 mya) has been attributed to the Cladophorales, while the oldest reliable records of the Bryopsidales, Dasycladales) and stoneworts are from the Paleozoic.[48][61]

The oldest known fossils of embryophytes date from the Ordovician, though such fossils are fragmentary. By the Silurian, fossils of whole plants are preserved, including the simple vascular plant Cooksonia in mid-Silurian and the much larger and more complex lycophyte Baragwanathia longifolia in late Silurian. From the early Devonian Rhynie chert, detailed fossils of lycophytes and rhyniophytes have been found that show details of the individual cells within the plant organs and the symbiotic association of these plants with fungi of the order Glomales. The Devonian period also saw the evolution of leaves and roots, and the first modern tree, Archaeopteris. This tree with fern-like foliage and a trunk with conifer-like wood was heterosporous producing spores of two different sizes, an early step in the evolution of seeds.[62]

The Coal measures are a major source of Paleozoic plant fossils, with many groups of plants in existence at this time. The spoil heaps of coal mines are the best places to collect; coal itself is the remains of fossilised plants, though structural detail of the plant fossils is rarely visible in coal. In the Fossil Grove at Victoria Park in Glasgow, Scotland, the stumps of Lepidodendron trees are found in their original growth positions.

The fossilized remains of conifer and angiosperm roots, stems and branches may be locally abundant in lake and inshore sedimentary rocks from the Mesozoic and Cenozoic eras. Sequoia and its allies, magnolia, oak, and palms are often found.

Petrified wood is common in some parts of the world, and is most frequently found in arid or desert areas where it is more readily exposed by erosion. Petrified wood is often heavily silicified (the organic material replaced by silicon dioxide), and the impregnated tissue is often preserved in fine detail. Such specimens may be cut and polished using lapidary equipment. Fossil forests of petrified wood have been found in all continents.

Fossils of seed ferns such as Glossopteris are widely distributed throughout several continents of the Southern Hemisphere, a fact that gave support to Alfred Wegener's early ideas regarding Continental drift theory.

Structure, growth, and development

The leaf is usually the primary site of photosynthesis in plants.

Most of the solid material in a plant is taken from the atmosphere. Through the process of photosynthesis, most plants use the energy in sunlight to convert carbon dioxide from the atmosphere, plus water, into simple sugars. These sugars are then used as building blocks and form the main structural component of the plant. Chlorophyll, a green-colored, magnesium-containing pigment is essential to this process; it is generally present in plant leaves, and often in other plant parts as well. Parasitic plants, on the other hand, use the resources of their host to provide the materials needed for metabolism and growth.

Plants usually rely on soil primarily for support and water (in quantitative terms), but they also obtain compounds of nitrogen, phosphorus, potassium, magnesium and other elemental nutrients from the soil. Epiphytic and lithophytic plants depend on air and nearby debris for nutrients, and carnivorous plants supplement their nutrient requirements, particularly for nitrogen and phosphorus, with insect prey that they capture. For the majority of plants to grow successfully they also require oxygen in the atmosphere and around their roots (soil gas) for respiration. Plants use oxygen and glucose (which may be produced from stored starch) to provide energy.[63] Some plants grow as submerged aquatics, using oxygen dissolved in the surrounding water, and a few specialized vascular plants, such as mangroves and reed (Phragmites australis),[64] can grow with their roots in anoxic conditions.

Factors affecting growth

The genome of a plant controls its growth. For example, selected varieties or genotypes of wheat grow rapidly, maturing within 110 days, whereas others, in the same environmental conditions, grow more slowly and mature within 155 days.[65]

Growth is also determined by environmental factors, such as temperature, available water, available light, carbon dioxide and available nutrients in the soil. Any change in the availability of these external conditions will be reflected in the plant's growth and the timing of its development.[citation needed]

Biotic factors also affect plant growth. Plants can be so crowded that no single individual produces normal growth, causing etiolation and chlorosis. Optimal plant growth can be hampered by grazing animals, suboptimal soil composition, lack of mycorrhizal fungi, and attacks by insects or plant diseases, including those caused by bacteria, fungi, viruses, and nematodes.[65]

There is no photosynthesis in deciduous leaves in autumn.

Simple plants like algae may have short life spans as individuals, but their populations are commonly seasonal. Annual plants grow and reproduce within one growing season, biennial plants grow for two growing seasons and usually reproduce in second year, and perennial plants live for many growing seasons and once mature will often reproduce annually. These designations often depend on climate and other environmental factors. Plants that are annual in alpine or temperate regions can be biennial or perennial in warmer climates. Among the vascular plants, perennials include both evergreens that keep their leaves the entire year, and deciduous plants that lose their leaves for some part of it. In temperate and boreal climates, they generally lose their leaves during the winter; many tropical plants lose their leaves during the dry season.[citation needed]

The growth rate of plants is extremely variable. Some mosses grow less than 0.001 millimeters per hour (mm/h), while most trees grow 0.025–0.250 mm/h. Some climbing species, such as kudzu, which do not need to produce thick supportive tissue, may grow up to 12.5 mm/h.[citation needed]

Plants protect themselves from frost and dehydration stress with antifreeze proteins, heat-shock proteins and sugars (sucrose is common). LEA (Late Embryogenesis Abundant) protein expression is induced by stresses and protects other proteins from aggregation as a result of desiccation and freezing.[66]

Effects of freezing

When water freezes in plants, the consequences for the plant depend very much on whether the freezing occurs within cells (intracellularly) or outside cells in intercellular spaces.[67] Intracellular freezing, which usually kills the cell[68] regardless of the hardiness of the plant and its tissues, seldom occurs in nature because rates of cooling are rarely high enough to support it. Rates of cooling of several degrees Celsius per minute are typically needed to cause intracellular formation of ice.[69] At rates of cooling of a few degrees Celsius per hour, segregation of ice occurs in intercellular spaces.[70] This may or may not be lethal, depending on the hardiness of the tissue. At freezing temperatures, water in the intercellular spaces of plant tissue freezes first, though the water may remain unfrozen until temperatures drop below −7 °C (19 °F).[67] After the initial formation of intercellular ice, the cells shrink as water is lost to the segregated ice, and the cells undergo freeze-drying. This dehydration is now considered the fundamental cause of freezing injury.

DNA damage and repair

Plants are continuously exposed to a range of biotic and abiotic stresses. These stresses often cause DNA damage directly, or indirectly via the generation of reactive oxygen species.[71] Plants are capable of a DNA damage response that is a critical mechanism for maintaining genome stability.[72] The DNA damage response is particularly important during seed germination, since seed quality tends to deteriorate with age in association with DNA damage accumulation.[73] During germination repair processes are activated to deal with this accumulated DNA damage.[74] In particular, single- and double-strand breaks in DNA can be repaired.[75] The DNA checkpoint kinase ATM has a key role in integrating progression through germination with repair responses to the DNA damages accumulated by the aged seed.[76]

Plant cells

Plant cell structure

Plant cells are typically distinguished by their large water-filled central vacuole, chloroplasts, and rigid cell walls that are made up of cellulose, hemicellulose, and pectin. Cell division is also characterized by the development of a phragmoplast for the construction of a cell plate in the late stages of cytokinesis. Just as in animals, plant cells differentiate and develop into multiple cell types. Totipotent meristematic cells can differentiate into vascular, storage, protective (e.g. epidermal layer), or reproductive tissues, with more primitive plants lacking some tissue types.[77]

Physiology

Photosynthesis

Plants photosynthesize, which means that they manufacture their own food molecules using energy obtained from light. The primary mechanism plants have for capturing light energy is the pigment chlorophyll. All green plants contain two forms of chlorophyll, chlorophyll a and chlorophyll b. The latter of these pigments is not found in red or brown algae. The simple equation of photosynthesis is as follows:

Immune system

By means of cells that behave like nerves, plants receive and distribute within their systems information about incident light intensity and quality. Incident light that stimulates a chemical reaction in one leaf, will cause a chain reaction of signals to the entire plant via a type of cell termed a bundle sheath cell. Researchers, from the Warsaw University of Life Sciences in Poland, found that plants have a specific memory for varying light conditions, which prepares their immune systems against seasonal pathogens.[78] Plants use pattern-recognition receptors to recognize conserved microbial signatures. This recognition triggers an immune response. The first plant receptors of conserved microbial signatures were identified in rice (XA21, 1995)[79] and in Arabidopsis thaliana (FLS2, 2000).[80] Plants also carry immune receptors that recognize highly variable pathogen effectors. These include the NBS-LRR class of proteins.

Internal distribution

Vascular plants differ from other plants in that nutrients are transported between their different parts through specialized structures, called xylem and phloem. They also have roots for taking up water and minerals. The xylem moves water and minerals from the root to the rest of the plant, and the phloem provides the roots with sugars and other nutrient produced by the leaves.[77]

Genomics

Plants have some of the largest genomes among all organisms.[81] The largest plant genome (in terms of gene number) is that of wheat (Triticum asestivum), predicted to encode ≈94,000 genes[82] and thus almost 5 times as many as the human genome. The first plant genome sequenced was that of Arabidopsis thaliana which encodes about 25,500 genes.[83] In terms of sheer DNA sequence, the smallest published genome is that of the carnivorous bladderwort (Utricularia gibba) at 82 Mb (although it still encodes 28,500 genes)[84] while the largest, from the Norway Spruce (Picea abies), extends over 19,600 Mb (encoding about 28,300 genes).[85]

Ecology

The photosynthesis conducted by land plants and algae is the ultimate source of energy and organic material in nearly all ecosystems. Photosynthesis, at first by cyanobacteria and later by photosynthetic eukaryotes, radically changed the composition of the early Earth's anoxic atmosphere, which as a result is now 21% oxygen. Animals and most other organisms are aerobic, relying on oxygen; those that do not are confined to relatively rare anaerobic environments. Plants are the primary producers in most terrestrial ecosystems and form the basis of the food web in those ecosystems. Many animals rely on plants for shelter as well as oxygen and food.[citation needed] Plants form about 80% of the world biomass at about 450 gigatonnes (4.4×1011 long tons; 5.0×1011 short tons) of carbon.[86]

Land plants are key components of the water cycle and several other biogeochemical cycles. Some plants have coevolved with nitrogen fixing bacteria, making plants an important part of the nitrogen cycle. Plant roots play an essential role in soil development and the prevention of soil erosion.[citation needed]

Distribution

Plants are distributed almost worldwide. While they inhabit a multitude of biomes and ecoregions, few can be found beyond the tundras at the northernmost regions of continental shelves. At the southern extremes, plants of the Antarctic flora have adapted tenaciously to the prevailing conditions.[citation needed]

Plants are often the dominant physical and structural component of habitats where they occur. Many of the Earth's biomes are named for the type of vegetation because plants are the dominant organisms in those biomes, such as grasslands, taiga and tropical rainforest.[citation needed]

Ecological relationships

The Venus flytrap, a species of carnivorous plant.

Numerous animals have coevolved with plants. Many animals pollinate flowers in exchange for food in the form of pollen or nectar. Many animals disperse seeds, often by eating fruit and passing the seeds in their feces. Myrmecophytes are plants that have coevolved with ants. The plant provides a home, and sometimes food, for the ants. In exchange, the ants defend the plant from herbivores and sometimes competing plants. Ant wastes provide organic fertilizer.

The majority of plant species have various kinds of fungi associated with their root systems in a kind of mutualistic symbiosis known as mycorrhiza. The fungi help the plants gain water and mineral nutrients from the soil, while the plant gives the fungi carbohydrates manufactured in photosynthesis. Some plants serve as homes for endophytic fungi that protect the plant from herbivores by producing toxins. The fungal endophyte, Neotyphodium coenophialum, in tall fescue (Festuca arundinacea) does tremendous economic damage to the cattle industry in the U.S. Many legume plants have nitrogen fixing bacteria in the genus Rhizobium, found in nodules of their roots, that fix nitrogen from the air for the plant to use. In exchange, the plants supply sugars to the bacteria.[87]

Various forms of parasitism are also fairly common among plants, from the semi-parasitic mistletoe that merely takes some nutrients from its host, but still has photosynthetic leaves, to the fully parasitic broomrape and toothwort that acquire all their nutrients through connections to the roots of other plants, and so have no chlorophyll. Some plants, known as myco-heterotrophs, parasitize mycorrhizal fungi, and hence act as epiparasites on other plants.

Many plants are epiphytes, meaning they grow on other plants, usually trees, without parasitizing them. Epiphytes may indirectly harm their host plant by intercepting mineral nutrients and light that the host would otherwise receive. The weight of large numbers of epiphytes may break tree limbs. Hemiepiphytes like the strangler fig begin as epiphytes but eventually set their own roots and overpower and kill their host. Many orchids, bromeliads, ferns and mosses often grow as epiphytes. Bromeliad epiphytes accumulate water in leaf axils to form phytotelmata that may contain complex aquatic food webs.[88]

Approximately 630 plants are carnivorous, such as the Venus Flytrap (Dionaea muscipula) and sundew (Drosera species). They trap small animals and digest them to obtain mineral nutrients, especially nitrogen and phosphorus.[89]

Competition

Competition occurs when members of the same species, or several different species, compete for shared resources in a given habitat. According to the competitive exclusion principle, when environmental resources are limited, species cannot occupy nor be supported by identical niches.[90] Eventually, one species will out-compete the other, which will push the disadvantaged species to extinction.[90]

In regard to plants, competition tends to negatively affect their growth when competing for shared resources.[91] These shared resources commonly include space for growth, sunlight, water and nutrients. Light is an important resource because it is necessary for photosynthesis.[91] Plants use their leaves to shade other plants from sunlight and grow quickly to maximize their own expose.[91] Water is also important for photosynthesis, and plants have different root systems to maximize water uptake from soil.[92] Some plants have deep roots that are able to locate water stored deep underground, and others have shallower roots that are capable of extending longer distances to collect recent rainwater.[92]

Minerals are also important for plant growth and development, where deficiencies can occur if nutrient needs are not met.[93] Common nutrients competed for amongst plants include nitrogen and phosphorus. Space is also extremely important for a growing and developing plant.[94] Having optimal space makes it more likely that leaves are exposed to sufficient amounts of sunlight and are not overcrowded in order for photosynthesis to occur.[94] If an old tree dies, then competition arises amongst a number of trees to replace it.[91] Those that are less effective competitors are less likely to contribute to the next generation of offspring.[91]

Contrary to the belief that plants are always in competition, new research has found that in a harsh environment mature plants sheltering seedlings help the smaller plant survive.[95]

Importance

Cultivation

The study of plant uses by people is called economic botany or ethnobotany.[96] Human cultivation of plants is part of agriculture, which is the basis of human civilization.[97] Plant agriculture is subdivided into agronomy, horticulture and forestry.[98]

Food

Mechanical harvest of oats.

Humans depend on plants for food, either directly or as feed for domestic animals. Agriculture deals with the production of food crops, and has played a key role in the history of world civilizations. Agriculture includes agronomy for arable crops, horticulture for vegetables and fruit, and forestry for timber.[99] About 7,000 species of plant have been used for food, though most of today's food is derived from only 30 species. The major staples include cereals such as rice and wheat, starchy roots and tubers such as cassava and potato, and legumes such as peas and beans. Vegetable oils such as olive oil and palm oil provide lipids, while fruit and vegetables contribute vitamins and minerals to the diet.[100]

Medicines

Medicinal plants are a primary source of organic compounds, both for their medicinal and physiological effects, and for the industrial synthesis of a vast array of organic chemicals.[101] Many hundreds of medicines are derived from plants, both traditional medicines used in herbalism[102][103] and chemical substances purified from plants or first identified in them, sometimes by ethnobotanical search, and then synthesised for use in modern medicine. Modern medicines derived from plants include aspirin, taxol, morphine, quinine, reserpine, colchicine, digitalis and vincristine. Plants used in herbalism include ginkgo, echinacea, feverfew, and Saint John's wort. The pharmacopoeia of Dioscorides, De Materia Medica, describing some 600 medicinal plants, was written between 50 and 70 AD and remained in use in Europe and the Middle East until around 1600 AD; it was the precursor of all modern pharmacopoeias.[104][105][106]

Nonfood products

Timber in storage for later processing at a sawmill

Plants grown as industrial crops are the source of a wide range of products used in manufacturing, sometimes so intensively as to risk harm to the environment.[107] Nonfood products include essential oils, natural dyes, pigments, waxes, resins, tannins, alkaloids, amber and cork. Products derived from plants include soaps, shampoos, perfumes, cosmetics, paint, varnish, turpentine, rubber, latex, lubricants, linoleum, plastics, inks, and gums. Renewable fuels from plants include firewood, peat and other biofuels.[108][109] The fossil fuels coal, petroleum and natural gas are derived from the remains of aquatic organisms including phytoplankton in geological time.[110]

Structural resources and fibres from plants are used to construct dwellings and to manufacture clothing. Wood is used not only for buildings, boats, and furniture, but also for smaller items such as musical instruments and sports equipment. Wood is pulped to make paper and cardboard.[111] Cloth is often made from cotton, flax, ramie or synthetic fibres such as rayon and acetate derived from plant cellulose. Thread used to sew cloth likewise comes in large part from cotton.[112]

Aesthetic uses

A rose espalier at Niedernhall in Germany.

Thousands of plant species are cultivated for aesthetic purposes as well as to provide shade, modify temperatures, reduce wind, abate noise, provide privacy, and prevent soil erosion. Plants are the basis of a multibillion-dollar per year tourism industry, which includes travel to historic gardens, national parks, rainforests, forests with colorful autumn leaves, and festivals such as Japan's[113] and America's cherry blossom festivals.[114]

Capitals of ancient Egyptian columns decorated to resemble papyrus plants. (at Luxor, Egypt)

While some gardens are planted with food crops, many are planted for aesthetic, ornamental, or conservation purposes. Arboretums and botanical gardens are public collections of living plants. In private outdoor gardens, lawn grasses, shade trees, ornamental trees, shrubs, vines, herbaceous perennials and bedding plants are used. Gardens may cultivate the plants in a naturalistic state, or may sculpture their growth, as with topiary or espalier. Gardening is the most popular leisure activity in the U.S., and working with plants or horticulture therapy is beneficial for rehabilitating people with disabilities.[citation needed]

Plants may also be grown or kept indoors as houseplants, or in specialized buildings such as greenhouses that are designed for the care and cultivation of living plants. Venus Flytrap, sensitive plant and resurrection plant are examples of plants sold as novelties. There are also art forms specializing in the arrangement of cut or living plant, such as bonsai, ikebana, and the arrangement of cut or dried flowers. Ornamental plants have sometimes changed the course of history, as in tulipomania.[115]

Architectural designs resembling plants appear in the capitals of Ancient Egyptian columns, which were carved to resemble either the Egyptian white lotus or the papyrus.[116] Images of plants are often used in painting and photography, as well as on textiles, money, stamps, flags and coats of arms.[citation needed]

Scientific and cultural uses

Barbara McClintock (1902–1992) was a pioneering cytogeneticist who used maize (corn) to study the mechanism of inheritance of traits.

Basic biological research has often been done with plants. In genetics, the breeding of pea plants allowed Gregor Mendel to derive the basic laws governing inheritance,[117] and examination of chromosomes in maize allowed Barbara McClintock to demonstrate their connection to inherited traits.[118] The plant Arabidopsis thaliana is used in laboratories as a model organism to understand how genes control the growth and development of plant structures.[119] NASA predicts that space stations or space colonies will one day rely on plants for life support.[120]

Ancient trees are revered and many are famous. Tree rings themselves are an important method of dating in archeology, and serve as a record of past climates.[citation needed]

Plants figure prominently in mythology, religion and literature.[121][122][123] They are used as national and state emblems, including state trees and state flowers. Plants are often used as memorials, gifts and to mark special occasions such as births, deaths, weddings and holidays. The arrangement of flowers may be used to send hidden messages.[citation needed]

Negative effects

Weeds are commercially or aesthetically undesirable plants growing in managed environments such as farms, urban areas, gardens, lawns, and parks. People have spread plants beyond their native ranges and some of these introduced plants become invasive, damaging existing ecosystems by displacing native species, and sometimes becoming serious weeds of cultivation.[citation needed]

Plants may cause harm to animals, including people. Plants that produce windblown pollen invoke allergic reactions in people who suffer from hay fever. A wide variety of plants are poisonous. Toxalbumins are plant poisons fatal to most mammals and act as a serious deterrent to consumption. Several plants cause skin irritations when touched, such as poison ivy. Certain plants contain psychotropic chemicals, which are extracted and ingested or smoked, including nicotine from tobacco, cannabinoids from Cannabis sativa, cocaine from Erythroxylon coca and opium from opium poppy. Smoking causes damage to health or even death, while some drugs may also be harmful or fatal to people.[124][125] Both illegal and legal drugs derived from plants may have negative effects on the economy, affecting worker productivity and law enforcement costs.[126][127]

See also

References

  1. ^ Cavalier-Smith, T. (1981). "Eukaryote kingdoms: Seven or nine?". BioSystems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID 7337818.
  2. ^ Lewis, L.A.; McCourt, R.M. (2004). "Green algae and the origin of land plants". American Journal of Botany. 91 (10): 1535–1556. doi:10.3732/ajb.91.10.1535. PMID 21652308.
  3. ^ Kenrick, Paul; Crane, Peter R. (1997). The origin and early diversification of land plants: A cladistic study. Washington, D.C.: Smithsonian Institution Press. ISBN 978-1-56098-730-7.
  4. ^ Adl, S.M. et al. (2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". Journal of Eukaryote Microbiology. 52 (5): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873. S2CID 8060916.CS1 maint: uses authors parameter (link)
  5. ^ "Numbers of threatened species by major groups of organisms (1996–2010)" (PDF). International Union for Conservation of Nature. 11 March 2010. Archived (PDF) from the original on 21 July 2011. Retrieved 27 April 2011.
  6. ^ Field, C.B.; Behrenfeld, M.J.; Randerson, J.T.; Falkowski, P. (1998). "Primary production of the biosphere: Integrating terrestrial and oceanic components". Science. 281 (5374): 237–240. Bibcode:1998Sci...281..237F. doi:10.1126/science.281.5374.237. PMID 9657713. Archived from the original on 25 September 2018. Retrieved 10 September 2018.
  7. ^ "plant[2] – Definition from the Merriam-Webster Online Dictionary". Archived from the original on 19 September 2011. Retrieved 25 March 2009.
  8. ^ "plant (life form) – Britannica Online Encyclopedia". Archived from the original on 13 March 2009. Retrieved 25 March 2009.
  9. ^ a b Whittaker, R.H. (1969). "New concepts of kingdoms or organisms" (PDF). Science. 163 (3863): 150–160. Bibcode:1969Sci...163..150W. CiteSeerX 10.1.1.403.5430. doi:10.1126/science.163.3863.150. PMID 5762760. Archived from the original (PDF) on 17 November 2017. Retrieved 4 November 2014.
  10. ^ Margulis, L (1971). "Whittaker's five kingdoms of organisms: minor revisions suggested by considerations of the origin of mitosis". Evolution. 25 (1): 242–245. doi:10.2307/2406516. JSTOR 2406516. PMID 28562945.
  11. ^ Copeland, H.F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books, p. 6, [1] Archived 14 October 2014 at the Wayback Machine.
  12. ^ Cavalier-Smith, T. (1981). "Eukaryote Kingdoms: Seven or Nine?". BioSystems. 14 (3–4): 461–481. doi:10.1016/0303-2647(81)90050-2. PMID 7337818.
  13. ^ Linnaeus, C. (1751). Philosophia botanica Archived 23 June 2016 at the Wayback Machine, 1st ed., p. 37.
  14. ^ Haeckel, E. (1866). Generale Morphologie der Organismen. Berlin: Verlag von Georg Reimer. pp. vol. 1: i–xxxii, 1–574, pls I–II, vol. 2: i–clx, 1–462, pls I–VIII.
  15. ^ Haeckel, E. (1894). Die systematische Phylogenie Archived 27 April 2016 at the Wayback Machine.
  16. ^ Based on Rogozin, I.B.; Basu, M.K.; Csürös, M. & Koonin, E.V. (2009), "Analysis of Rare Genomic Changes Does Not Support the Unikont–Bikont Phylogeny and Suggests Cyanobacterial Symbiosis as the Point of Primary Radiation of Eukaryotes", Genome Biology and Evolution, 1: 99–113, doi:10.1093/gbe/evp011, PMC 2817406, PMID 20333181 and Becker, B. & Marin, B. (2009), "Streptophyte algae and the origin of embryophytes", Annals of Botany, 103 (7): 999–1004, doi:10.1093/aob/mcp044, PMC 2707909, PMID 19273476; see also the slightly different cladogram in Lewis, Louise A. & McCourt, R.M. (2004), "Green algae and the origin of land plants", Am. J. Bot., 91 (10): 1535–1556, doi:10.3732/ajb.91.10.1535, PMID 21652308
  17. ^ Parfrey, Laura Wegener; Lahr, Daniel J.G.; Knoll, Andrew H.; Katz, Laura A. (16 August 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks". Proceedings of the National Academy of Sciences. 108 (33): 13624–13629. Bibcode:2011PNAS..10813624P. doi:10.1073/pnas.1110633108. PMC 3158185. PMID 21810989.
  18. ^ Derelle, Romain; Torruella, Guifré; Klimeš, Vladimír; Brinkmann, Henner; Kim, Eunsoo; Vlček, Čestmír; Lang, B. Franz; Eliáš, Marek (17 February 2015). "Bacterial proteins pinpoint a single eukaryotic root". Proceedings of the National Academy of Sciences. 112 (7): E693–E699. Bibcode:2015PNAS..112E.693D. doi:10.1073/pnas.1420657112. PMC 4343179. PMID 25646484.
  19. ^ Jackson, Christopher; Clayden, Susan; Reyes-Prieto, Adrian (1 January 2015). "The Glaucophyta: the blue-green plants in a nutshell". Acta Societatis Botanicorum Poloniae. 84 (2): 149–165. doi:10.5586/asbp.2015.020.
  20. ^ a b Sánchez-Baracaldo, Patricia; Raven, John A.; Pisani, Davide; Knoll, Andrew H. (12 September 2017). "Early photosynthetic eukaryotes inhabited low-salinity habitats". Proceedings of the National Academy of Sciences. 114 (37): E7737–E7745. doi:10.1073/pnas.1620089114. PMC 5603991. PMID 28808007.
  21. ^ a b Gitzendanner, Matthew A.; Soltis, Pamela S.; Wong, Gane K.-S.; Ruhfel, Brad R.; Soltis, Douglas E. (2018). "Plastid phylogenomic analysis of green plants: A billion years of evolutionary history". American Journal of Botany. 105 (3): 291–301. doi:10.1002/ajb2.1048. PMID 29603143.
  22. ^ Gawryluk, Ryan M. R.; Tikhonenkov, Denis V.; Hehenberger, Elisabeth; Husnik, Filip; Mylnikov, Alexander P.; Keeling, Patrick J. (8 August 2019). "Non-photosynthetic predators are sister to red algae". Nature. 572 (7768): 240–243. doi:10.1038/s41586-019-1398-6. ISSN 1476-4687. PMID 31316212. S2CID 197542583.
  23. ^ Margulis, L. (1974). "Five-kingdom classification and the origin and evolution of cells". The power of phylogenetic approaches to detect horizontally transferred genes. Evolutionary Biology. 7. pp. 45–78. doi:10.1007/978-1-4615-6944-2_2. ISBN 978-1-4615-6946-6. PMC 1847511. PMID 17376230.
  24. ^ a b c d e Raven, Peter H.; Evert, Ray F.; Eichhorn, Susan E. (2005). Biology of Plants (7th ed.). New York: W.H. Freeman and Company. ISBN 978-0-7167-1007-3.
  25. ^ Lewis, Louise A. & McCourt, R.M. (2004), "Green algae and the origin of land plants", Am. J. Bot., 91 (10): 1535–1556, doi:10.3732/ajb.91.10.1535, PMID 21652308
  26. ^ a b Becker, B. & Marin, B. (2009), "Streptophyte algae and the origin of embryophytes", Annals of Botany, 103 (7): 999–1004, doi:10.1093/aob/mcp044, PMC 2707909, PMID 19273476
  27. ^ Guiry, M.D.; Guiry, G.M. (2007). "Phylum: Chlorophyta taxonomy browser". AlgaeBase version 4.2 World-wide electronic publication, National University of Ireland, Galway. Archived from the original on 18 June 2009. Retrieved 23 September 2007.
  28. ^ Deacon, J.W. (2005). Fungal Biology. Wiley. ISBN 978-1-4051-3066-0. Archived from the original on 3 June 2016. Retrieved 8 January 2016.
  29. ^ "An Online Flora of All Known Plants". World Flora Online. Retrieved 26 October 2020.
  30. ^ Hassler, Michael. "Total Species Count". World Plants. Synonymic Checklist and Distribution of the World Flora. Retrieved 26 October 2020.
  31. ^ Van den Hoek, C.; Mann, D.G.; & Jahns, H.M. 1995. Algae: An Introduction to Phycology. pp. 343, 350, 392, 413, 425, 439, & 448 (Cambridge: Cambridge University Press). ISBN 0-521-30419-9
  32. ^ Guiry, M.D. & Guiry, G.M. (2011), AlgaeBase : Chlorophyta, World-wide electronic publication, National University of Ireland, Galway, archived from the original on 13 September 2019, retrieved 26 July 2011
  33. ^ Guiry, M.D. & Guiry, G.M. (2011), AlgaeBase : Charophyta, World-wide electronic publication, National University of Ireland, Galway, archived from the original on 13 September 2019, retrieved 26 July 2011
  34. ^ Van den Hoek, C.; Mann, D.G.; & Jahns, H.M. 1995. Algae: An Introduction to Phycology. pp. 457, 463, & 476. (Cambridge: Cambridge University Press). ISBN 0-521-30419-9
  35. ^ Crandall-Stotler, Barbara & Stotler, Raymond E., 2000. "Morphology and classification of the Marchantiophyta". p. 21 in A. Jonathan Shaw & Bernard Goffinet (Eds.), Bryophyte Biology. (Cambridge: Cambridge University Press). ISBN 0-521-66097-1
  36. ^ Schuster, Rudolf M., The Hepaticae and Anthocerotae of North America, volume VI, pp. 712–713. (Chicago: Field Museum of Natural History, 1992). ISBN 0-914868-21-7.
  37. ^ Goffinet, Bernard; William R. Buck (2004). "Systematics of the Bryophyta (Mosses): From molecules to a revised classification". Monographs in Systematic Botany. 98: 205–239.
  38. ^ Gifford, Ernest M.; Foster, Adriance S. (1988). Morphology and Evolution of Vascular Plants (3rd ed.). New York: W.H. Freeman and Company. p. 358. ISBN 978-0-7167-1946-5.
  39. ^ Taylor, Thomas N.; Taylor, Edith L. (1993). The Biology and Evolution of Fossil Plants. New Jersey: Prentice-Hall. p. 636. ISBN 978-0-13-651589-0.
  40. ^ International Union for Conservation of Nature and Natural Resources, 2006. IUCN Red List of Threatened Species:Summary Statistics Archived 27 June 2014 at the Wayback Machine
  41. ^ "The oldest fossils reveal evolution of non-vascular plants by the middle to late Ordovician Period (≈450–440 m.y.a.) on the basis of fossil spores" Transition of plants to land Archived 2 March 2008 at the Wayback Machine
  42. ^ Strother, Paul K.; Battison, Leila; Brasier, Martin D.; Wellman, Charles H. (26 May 2011). "Earth's earliest non-marine eukaryotes". Nature. 473 (7348): 505–509. Bibcode:2011Natur.473..505S. doi:10.1038/nature09943. PMID 21490597. S2CID 4418860.
  43. ^ Harholt, Jesper; Moestrup, Øjvind; Ulvskov, Peter (1 February 2016). "Why Plants Were Terrestrial from the Beginning". Trends in Plant Science. 21 (2): 96–101. doi:10.1016/j.tplants.2015.11.010. PMID 26706443.
  44. ^ Ponce-Toledo, R. I.; Deschamps, P.; López-García, P.; Zivanovic, Y.; Benzerara, K.; Moreira, D. (2017). "An early-branching freshwater cyanobacterium at the origin of plastids". Current Biology. 27 (3): 386–391. doi:10.1016/j.cub.2016.11.056. PMC 5650054. PMID 28132810.
  45. ^ Rothwell, G.W.; Scheckler, S.E.; Gillespie, W.H. (1989). "Elkinsia gen. nov., a Late Devonian gymnosperm with cupulate ovules". Botanical Gazette. 150 (2): 170–189. doi:10.1086/337763. JSTOR 2995234. S2CID 84303226.
  46. ^ Kenrick, Paul & Peter R. Crane. 1997. The Origin and Early Diversification of Land Plants: A Cladistic Study. (Washington, D.C., Smithsonian Institution Press.) ISBN 1-56098-730-8.
  47. ^ Smith Alan R.; Pryer, Kathleen M.; Schuettpelz, E.; Korall, P.; Schneider, H.; Wolf, Paul G. (2006). "A classification for extant ferns" (PDF). Taxon. 55 (3): 705–731. doi:10.2307/25065646. JSTOR 25065646. Archived from the original (PDF) on 26 February 2008.
  48. ^ a b Leliaert, F.; Smith, D.R.; Moreau, H.; Herron, M.D.; Verbruggen, H.; Delwiche, C.F.; De Clerck, O. (2012). "Phylogeny and molecular evolution of the green algae" (PDF). Critical Reviews in Plant Sciences. 31: 1–46. doi:10.1080/07352689.2011.615705. S2CID 17603352. Archived from the original (PDF) on 26 June 2015.
  49. ^ Leliaert, Frederik; Verbruggen, Heroen; Zechman, Frederick W. (2011). "Into the deep: New discoveries at the base of the green plant phylogeny". BioEssays. 33 (9): 683–692. doi:10.1002/bies.201100035. PMID 21744372. S2CID 40459076.
  50. ^ Silar, Philippe (2016), "Protistes Eucaryotes: Origine, Evolution et Biologie des Microbes Eucaryotes", HAL Archives-ouvertes: 1–462, archived from the original on 13 May 2016, retrieved 21 July 2016
  51. ^ Mikhailyuk, Tatiana; Lukešová, Alena; Glaser, Karin; Holzinger, Andreas; Obwegeser, Sabrina; Nyporko, Svetlana; Friedl, Thomas; Karsten, Ulf (2018). "New Taxa of Streptophyte Algae (Streptophyta) from Terrestrial Habitats Revealed Using an Integrative Approach". Protist. 169 (3): 406–431. doi:10.1016/j.protis.2018.03.002. ISSN 1434-4610. PMC 6071840. PMID 29860113.
  52. ^ Novíkov & Barabaš-Krasni (2015). Modern plant systematics. Liga-Pres. p. 685. doi:10.13140/RG.2.1.4745.6164. ISBN 978-966-397-276-3.
  53. ^ Leebens-Mack, M.; Barker, M.; Carpenter, E.; Deyholos, M.K.; Gitzendammer, M.A.; Graham, S.W.; Grosse, I.; Li, Zheng (2019). "One thousand plant transcriptomes and the phylogenomics of green plants". Nature. 574 (7780): 679–685. doi:10.1038/s41586-019-1693-2. PMC 6872490. PMID 31645766.
  54. ^ Liang, Zhe; et al. (2019). "Mesostigma viride Genome and Transcriptome Provide Insights into the Origin and Evolution of Streptophyta". Advanced Science. 7 (1): 1901850. doi:10.1002/advs.201901850. PMC 6947507. PMID 31921561.
  55. ^ Wang, Sibo; et al. (2020). "Genomes of early-diverging streptophyte algae shed light on plant terrestrialization". Nature Plants. 6 (2): 95–106. doi:10.1038/s41477-019-0560-3. PMC 7027972. PMID 31844283.
  56. ^ Puttick, Mark; et al. (2018). "The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte". Current Biology. 28 (5): 733–745. doi:10.1016/j.cub.2018.01.063. PMID 29456145.
  57. ^ Zhang, Jian; et al. (2020). "The hornwort genome and early land plant evolution". Nature Plants. 6 (2): 107–118. doi:10.1038/s41477-019-0588-4. PMC 7027989. PMID 32042158.
  58. ^ Li, Fay Wei; et al. (2020). "Anthoceros genomes illuminate the origin of land plants and the unique biology of hornworts". Nature Plants. 6 (3): 259–272. doi:10.1038/s41477-020-0618-2. PMC 8075897. PMID 32170292.
  59. ^ Knoll, Andrew H (2003). Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton University Press.
  60. ^ Tappan, H (1980). Palaeobiology of Plant Protists. Freeman, San Francisco.
  61. ^ Butterfield, Nicholas J.; Knoll, Andrew H.; Swett, Keene (1994). "Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen". Lethaia. 27 (1): 76. doi:10.1111/j.1502-3931.1994.tb01558.x.
  62. ^ Stewart, Wilson A.; Rothwell, Gar W. (1993). Paleobotany and the evolution of plants (2 ed.). Cambridge University Press. ISBN 978-0521382946.
  63. ^ Wilson, Edward O.; et al. (1973). Life on Earth (First ed.). Stamford, Conn., Sinauer Associates. p. 145. ISBN 978-0-87893-934-3.
  64. ^ R.M.M., Crawford (1982). "Physiological responses in flooding". Encyclopedia of Plant Physiology. 12B: 453–477.
  65. ^ a b Robbins, W.W.; Weier, T.E.; et al., Botany: Plant Science, 3rd edition, Wiley International, New York, 1965.
  66. ^ Goyal, K.; Walton, L.J.; Tunnacliffe, A. (2005). "LEA proteins prevent protein aggregation due to water stress". Biochemical Journal. 388 (Part 1): 151–157. doi:10.1042/BJ20041931. PMC 1186703. PMID 15631617.
  67. ^ a b Glerum, C. 1985. Frost hardiness of coniferous seedlings: principles and applications. pp. 107–123 in Duryea, M.L. (Ed.). Proceedings: Evaluating seedling quality: principles, procedures, and predictive abilities of major tests. Workshop, October 1984, Oregon State Univ., For. Res. Lab., Corvallis OR.
  68. ^ Lyons, J.M.; Raison, J.K.; Steponkus, P.L. 1979. The plant membrane in response to low temperature: an overview. pp. 1–24 in Lyons, J.M.; Graham, D.; Raison, J.K. (Eds.). Low Temperature Stress in Crop Plants. Academic Press, New York NY.
  69. ^ Mazur, P. 1977. The role of intracellular freezing in the death of cells cooled at supraoptimal rates. Cryobiology 14:251–272.
  70. ^ Sakai, A.; Larcher, W. (Eds.) 1987. Frost Survival of Plants. Springer-Verlag, New York. 321 p.
  71. ^ Roldán-Arjona, T.; Ariza, R.R. (2009). "Repair and tolerance of oxidative DNA damage in plants". Mutation Research. 681 (2–3): 169–179. doi:10.1016/j.mrrev.2008.07.003. PMID 18707020.
  72. ^ Yoshiyama, K.O. (2016). "SOG1: a master regulator of the DNA damage response in plants". Genes and Genetic Systems. 90 (4): 209–216. doi:10.1266/ggs.15-00011. PMID 26617076.
  73. ^ Waterworth, W.M.; Bray, C.M.; West, C.E. (2015). "The importance of safeguarding genome integrity in germination and seed longevity". Journal of Experimental Botany. 66 (12): 3549–3558. doi:10.1093/jxb/erv080. PMID 25750428.
  74. ^ Koppen, G.; Verschaeve, L. (2001). "The alkaline single-cell gel electrophoresis/comet assay: a way to study DNA repair in radicle cells of germinating Vicia faba". Folia Biologica (Prague). 47 (2): 50–54. PMID 11321247.
  75. ^ Waterworth, W.M.; Masnavi, G.; Bhardwaj, R.M.; Jiang, Q.; Bray, C.M.; West, C.E. (2010). "A plant DNA ligase is an important determinant of seed longevity". Plant Journal. 63 (5): 848–860. doi:10.1111/j.1365-313X.2010.04285.x. PMID 20584150.
  76. ^ Waterworth, W.M.; Footitt, S.; Bray, C.M.; Finch-Savage, W.E.; West, C.E. (2016). "DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds". PNAS. 113 (34): 9647–9652. doi:10.1073/pnas.1608829113. PMC 5003248. PMID 27503884.
  77. ^ a b Campbell, Neil A.; Reece, Jane B. (2005). Biology (7th ed.). Pearson/Benjamin Cummings. ISBN 978-0-8053-7146-8.
  78. ^ Gill, Victoria (14 July 2010). "Plants 'can think and remember'". BBC News. BBC. Archived from the original on 5 June 2018. Retrieved 20 June 2018.
  79. ^ Song, W.Y.; et al. (1995). "A receptor kinase-like protein encoded by the rice disease resistance gene, XA21". Science. 270 (5243): 1804–1806. Bibcode:1995Sci...270.1804S. doi:10.1126/science.270.5243.1804. PMID 8525370. S2CID 10548988. Archived from the original on 7 November 2018. Retrieved 10 September 2018.
  80. ^ Gomez-Gomez, L.; et al. (2000). "FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis". Molecular Cell. 5 (6): 1003–1011. doi:10.1016/S1097-2765(00)80265-8. PMID 10911994.
  81. ^ Michael, Todd P.; Jackson, Scott (1 July 2013). "The First 50 Plant Genomes". The Plant Genome. 6 (2): 0. doi:10.3835/plantgenome2013.03.0001in.
  82. ^ Brenchley, Rachel; Spannagl, Manuel; Pfeifer, Matthias; Barker, Gary L.A.; D'Amore, Rosalinda; Allen, Alexandra M.; McKenzie, Neil; Krame r, Melissa; Kerhornou, Arnau (29 November 2012). "Analysis of the bread wheat genome using whole-genome shotgun sequencing". Nature. 491 (7426): 705–710. Bibcode:2012Natur.491..705B. doi:10.1038/nature11650. PMC 3510651. PMID 23192148.
  83. ^ Arabidopsis Genome Initiative (14 December 2000). "Analysis of the genome sequence of the flowering plant Arabidopsis thaliana". Nature. 408 (6814): 796–815. Bibcode:2000Natur.408..796T. doi:10.1038/35048692. PMID 11130711.
  84. ^ Ibarra-Laclette, Enrique; Lyons, Eric; Hernández-Guzmán, Gustavo; Pérez-Torres, Claudia Anahí; Carretero-Paulet, Lorenzo; Chang, Tien-Hao; Lan, Tianying; Welch, Andreanna J.; Juárez, María Jazmín Abraham (6 June 2013). "Architecture and evolution of a minute plant genome". Nature. 498 (7452): 94–98. Bibcode:2013Natur.498...94I. doi:10.1038/nature12132. PMC 4972453. PMID 23665961.
  85. ^ Nystedt, Björn; Street, Nathaniel R.; Wetterbom, Anna; Zuccolo, Andrea; Lin, Yao-Cheng; Scofield, Douglas G.; Vezzi, Francesco; Delhomme, Nicolas; Giacomello, Stefania (30 May 2013). "The Norway spruce genome sequence and conifer genome evolution". Nature. 497 (7451): 579–584. Bibcode:2013Natur.497..579N. doi:10.1038/nature12211. PMID 23698360.
  86. ^ Bar-On YM, Phillips R, Milo R (June 2018). "The biomass distribution on Earth" (PDF). Proceedings of the National Academy of Sciences of the United States of America. 115 (25): 6506–6511. doi:10.1073/pnas.1711842115. PMC 6016768. PMID 29784790.
  87. ^ Wagner, Stephen (2011). "Biological Nitrogen Fixation". Nature Education Knowledge.
  88. ^ Frank, Howard, Bromeliad Phytotelmata Archived 20 August 2009 at the Wayback Machine, October 2000
  89. ^ Barthlott, W.; Porembski, S.; Seine, R.; Theisen, I. 2007. The Curious World of Carnivorous Plants: A Comprehensive Guide to Their Biology and Cultivation. Timber Press: Portland, Oregon.
  90. ^ a b Pocheville, Arnaud. "The Ecological Niche: History and Recent Controversies". Handbook for Evolutionary Thinking - Springer.
  91. ^ a b c d e "Competition in Plant Communities". obo. Retrieved 16 February 2021.
  92. ^ a b Casper, Brenda B.; Jackson, Robert B. (November 1997). "Plant Competition Underground". Annual Review of Ecology and Systematics. 28 (1): 545–570. doi:10.1146/annurev.ecolsys.28.1.545. ISSN 0066-4162.
  93. ^ Craine, Joseph M.; Dybzinski, Ray (2013). "Mechanisms of plant competition for nutrients, water and light". Functional Ecology. 27 (4): 833–840. doi:10.1111/1365-2435.12081. ISSN 1365-2435.
  94. ^ a b Oborny, Beáta; Kun, Ádám; Czárán, Tamás; Bokros, Szilárd (2000). "The Effect of Clonal Integration on Plant Competition for Mosaic Habitat Space". Ecology. 81 (12): 3291–3304. doi:10.1890/0012-9658(2000)081[3291:TEOCIO]2.0.CO;2. ISSN 1939-9170.
  95. ^ University of Portsmouth (13 November 2019). "Plants might be helping each other more than thought". phys.org. Retrieved 6 May 2021.
  96. ^ Kochhar, S.L. (31 May 2016). Economic Botany: A Comprehensive Study. Cambridge University Press. ISBN 9781316675397.
  97. ^ Wrench, Jason S. (9 January 2013). Workplace Communication for the 21st Century: Tools and Strategies that Impact the Bottom Line [2 volumes]: Tools and Strategies That Impact the Bottom Line. ABC-CLIO. ISBN 9780313396328.
  98. ^ United States Agricultural Research Service (1903). Report on the Agricultural Experiment Stations. U.S. Government Printing Office.
  99. ^ "The Development of Agriculture". National Geographic. 2016. Archived from the original on 14 April 2016. Retrieved 1 October 2017.
  100. ^ "Food and drink". Kew Gardens. Archived from the original on 28 March 2014. Retrieved 1 October 2017.
  101. ^ "Chemicals from Plants". Cambridge University Botanic Garden. Archived from the original on 9 December 2017. Retrieved 9 December 2017. Note that the details of each plant and the chemicals it yields are described in the linked subpages.
  102. ^ Tapsell, L.C.; Hemphill, I.; Cobiac, L. (August 2006). "Health benefits of herbs and spices: the past, the present, the future". Med. J. Aust. 185 (4 Suppl): S4–24. doi:10.5694/j.1326-5377.2006.tb00548.x. PMID 17022438. S2CID 9769230.
  103. ^ Lai, P.K.; Roy, J.; Roy (June 2004). "Antimicrobial and chemopreventive properties of herbs and spices". Curr. Med. Chem. 11 (11): 1451–1460. doi:10.2174/0929867043365107. PMID 15180577.CS1 maint: multiple names: authors list (link)
  104. ^ "Greek Medicine". National Institutes of Health, USA. 16 September 2002. Archived from the original on 9 November 2013. Retrieved 22 May 2014.
  105. ^ Hefferon, Kathleen (2012). Let Thy Food Be Thy Medicine. Oxford University Press. p. 46. ISBN 978-0199873982.
  106. ^ Rooney, Anne (2009). The Story of Medicine. Arcturus Publishing. p. 143. ISBN 978-1848580398.
  107. ^ "Industrial Crop Production". Grace Communications Foundation. 2016. Archived from the original on 10 June 2016. Retrieved 20 June 2016.
  108. ^ "Industrial Crops and Products An International Journal". Elsevier. Archived from the original on 2 October 2017. Retrieved 20 June 2016.
  109. ^ Cruz, Von Mark V.; Dierig, David A. (2014). Industrial Crops: Breeding for BioEnergy and Bioproducts. Springer. pp. 9 and passim. ISBN 978-1-4939-1447-0. Archived from the original on 22 April 2017. Retrieved 1 October 2017.
  110. ^ Sato, Motoaki (1990). Thermochemistry of the formation of fossil fuels (PDF). Fluid-Mineral Interactions: A Tribute to H. P. Eugster, Special Publication No. 2. The Geochemical Society. Archived (PDF) from the original on 20 September 2015. Retrieved 1 October 2017.
  111. ^ Sixta, Herbert, ed. (2006). Handbook of pulp. 1. Winheim, Germany: Wiley-VCH. p. 9. ISBN 978-3-527-30997-9.
  112. ^ "Natural fibres". Discover Natural Fibres. Archived from the original on 20 July 2016. Retrieved 20 June 2016.
  113. ^ Sosnoski, Daniel (1996). Introduction to Japanese culture. Tuttle. p. 12. ISBN 978-0-8048-2056-1. Retrieved 13 December 2017.
  114. ^ "History of the Cherry Blossom Trees and Festival". National Cherry Blossom Festival: About. National Cherry Blossom Festival. Archived from the original on 14 March 2016. Retrieved 22 March 2016.
  115. ^ Lambert, Tim (2014). "A Brief History of Gardening". BBC. Archived from the original on 9 June 2016. Retrieved 21 June 2016.
  116. ^ Wilkinson, Richard H. (2000). The Complete Temples of Ancient Egypt. Thames and Hudson. pp. 65–66. ISBN 978-0-500-05100-9.
  117. ^ Blumberg, Roger B. "Mendel's Paper in English". Archived from the original on 13 January 2016. Retrieved 9 December 2017.
  118. ^ "Barbara McClintock: A Brief Biographical Sketch". WebCite. Archived from the original on 21 August 2011. Retrieved 21 June 2016.
  119. ^ "About Arabidopsis". TAIR. Archived from the original on 22 October 2016. Retrieved 21 June 2016.
  120. ^ "Engineering Life". NASA. Archived from the original on 8 June 2016. Retrieved 21 June 2016.
  121. ^ Leitten, Rebecca Rose. "Plant Myths and Legends". Cornell University Liberty Hyde Bailey Conservatory. Archived from the original on 7 August 2016. Retrieved 20 June 2016.
  122. ^ "Seven of the most sacred plants in the world". BBC. Retrieved 12 October 2020.
  123. ^ "Literary Plants". Nature Plants. 1 (11): 15181. 2015. doi:10.1038/nplants.2015.181. PMID 27251545.
  124. ^ "cocaine/crack". Archived from the original on 20 May 2007. Retrieved 25 May 2007.
  125. ^ "Deaths related to cocaine". Archived from the original on 17 July 2006. Retrieved 25 May 2007.
  126. ^ "Illegal drugs drain $160 billion a year from American economy". Archived from the original on 15 February 2008.
  127. ^ García-Altés, Anna; Ollé, Josep Ma; Antoñanzas, Fernando; Colom, Joan (September 2002). "The social cost of illegal drug consumption in Spain". Addiction. 97 (9): 1145–1153. doi:10.1046/j.1360-0443.2002.00170.x. PMID 12199830. Archived from the original on 2 October 2007. Retrieved 25 May 2007.

Further reading

General
Species estimates and counts

External links

Botanical and vegetation databases